Search results for "methane oxidation"

showing 10 items of 13 documents

Biotic oxidation of methane in landfills in boreal climatic conditions

2010

 This study focused on the biotic oxidation of methane in landfill covers as a technology for reducing greenhouse gas emissions from landfills, particularly those located in the boreal climatic zone. First, methane oxidation was studied in laboratory batch assays in a landfill cover soil consisting of a composted mixture of sewage sludge and chemical sludge which had been installed on the landfill surface 4-5 years earlier. Second, methane oxidation was studied using mechanically-biologically treated municipal solid waste (MBT residual) as a material for methane-oxidizing landfill covers both in continuously methane-sparged laboratory columns and in an outdoor pilot lysimeter. Finally, meth…

methane oxidationmunicipal wasteshapettuminenyhdyskuntajätteetjätehuoltoviileä ilmastolow temperaturemetaanikasvihuonekaasutkaatopaikatboreaalinen vyöhykegreenhouse gasesbiotekninen hapettaminenlandfillswaste management
researchProduct

Geochemistry and mineralogy of sediments and authigenic carbonates from the Malta Plateau, Strait of Sicily (Central Mediterranean): Relationships wi…

2010

Abstract A mud volcano field was recently discovered within the Malta Plateau in the Strait of Sicily (Central Mediterranean Sea). Box-core sediments and associated authigenic carbonates have been collected in water depths of 140–170 m from two distinctive sectors of the area, and analyzed for major, trace and rare earth elements, stable isotopes, and mineralogy. Relative homogeneity in the mineralogy and geochemistry of bulk sediments, and 210Pb activity distributions, argue against an active mud ejection activity. In the Malta Plateau western sector, the sediments show high concentrations of Fe, As, Sb, and Mo, exceeding the background values estimated for the Strait of Sicily. Active flu…

Methane oxidationGeochemistryMineralogyengineering.materialchemistry.chemical_compoundMediterranean seaSeep carbonateGeochemistry and PetrologygeographyPlateaugeography.geographical_feature_categoryδ13CAragoniteSediment geochemistrySettore GEO/07 - Petrologia E PetrografiaGeologyAuthigenicStable isotopeSettore GEO/08 - Geochimica E VulcanologiaStrait of SicilychemistryAnaerobic oxidation of methaneengineeringCarbonateGeologyMud volcano
researchProduct

Gammaproteobacterial methanotrophs dominate methanotrophy in aerobic and anaerobic layers of boreal lake waters

2018

Small oxygen-stratified humic lakes of the boreal zone are important sources of methane to the atmosphere. Although stable isotope profiling has indicated that a substantial part of methane is already oxidized in the anaerobic water layers in these lakes, the contributions of aerobic and anaerobic methanotrophs in the process are unknown. We used next-generation sequencing of mcrA and 16S rRNA genes to characterize the microbial communities in the water columns of 2 boreal lakes in Finland, Lake Alinen-Mustajärvi and Lake Mekkojärvi, and complemented this with a shotgun metagenomic analysis from Alinen-Mustajärvi and an analysis of pmoA genes and 16S rRNA, mcrA, and pmoA transcripts from Me…

0301 basic medicineMethanotrophta1172116 Chemical sciences030106 microbiologyAquatic Sciencejärvetmetaanibakteerit03 medical and health sciencesWater columnboreal lakemethanotroph16S rRNAEcology Evolution Behavior and Systematicsmethane oxidationta1183water columngenomiikkamcrAmikrobisto030104 developmental biologyBorealEnvironmental chemistryAnaerobic oxidation of methaneEnvironmental scienceAnaerobic exerciseShotgun metagenomicsshotgun metagenomicsAquatic Microbial Ecology
researchProduct

Effects of alternative electron acceptors on the activity and community structure of methane-producing and consuming microbes in the sediments of two…

2017

The role of anaerobic CH4 oxidation in controlling lake sediment CH4 emissions remains unclear. Therefore, we tested how relevant EAs (SO42−, NO3−, Fe3+, Mn4+, O2) affect CH4 production and oxidation in the sediments of two shallow boreal lakes. The changes induced to microbial communities by the addition of Fe3+ and Mn4+ were studied using next-generation sequencing targeting the 16S rRNA and methyl-coenzyme M reductase (mcrA) genes and mcrA transcripts. Putative anaerobic CH4-oxidizing archaea (ANME-2D) and bacteria (NC 10) were scarce (up to 3.4% and 0.5% of archaeal and bacterial 16S rRNA genes, respectively), likely due to the low environmental stability associated with shallow depths.…

0301 basic medicineGeologic SedimentsMicroorganism116 Chemical sciencessedimentitApplied Microbiology and BiotechnologyRNA Ribosomal 16SMagnesiummikrobitoksidantitchemistry.chemical_classificationoxidantsEcologybiologyEcologymethane oxidationsedimentshapettuminenmethanogenesismcrAEnvironmental chemistrymicrobesOxidoreductasesMethaneOxidation-ReductionoxidationMethanogenesisIronta1172030106 microbiologyElectronsMethanobacteriajärvetmetaaniMicrobiology03 medical and health sciencesOrganic matter16S rRNAMicrobial biodegradationlakeBacteriata1183Carbon Dioxidebiology.organism_classificationArchaeaLakessedimentchemistry13. Climate actionAnaerobic oxidation of methaneBacteriaArchaeaFEMS Microbiology Ecology
researchProduct

Co3O4 particles grown over nanocrystalline CeO2: influence of precipitation agents and calcination temperature on the catalytic activity for methane …

2015

Crystalline cobalt oxides were prepared by a precipitation method using three different precipitation agents, (NH4)(2)CO3, Na2CO3 and CO(NH2)(2). Cobalt oxide nanoparticles corresponding to a Co3O4 loading of 30 wt% were also deposited over high-surface area nanocrystalline ceria by the same precipitation agents. The effect of calcination temperature, 350 or 650 degrees C, on the morphological and structural properties was evaluated. Characterization by BET, XRD, SEM, TEM, Raman spectroscopy, H-2-TPR, XPS and NH3-TPD was performed and the catalytic properties were explored in the methane oxidation reaction. The nature of the precipitation agent strongly influenced the textural properties of…

Materials sciencePrecipitation (chemistry)methane oxidationInorganic chemistrychemistry.chemical_elementCatalysisMethaneNanocrystalline materiallaw.inventionceriachemistry.chemical_compoundCo3O4Chemical engineeringchemistrylawCo3O4 CeO2 methane oxidationAnaerobic oxidation of methaneCalcinationCrystalliteSettore CHIM/07 - Fondamenti Chimici Delle TecnologieCobaltCobalt oxide
researchProduct

Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw

2019

Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long-term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO 2 ) and methane (CH 4 ) to the atmosphere, but how much, at which time-span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant–soil systems (mesocosms) allowed us to simulate permafrost thaw under near-natural conditions. We monitored GHG flux dynamics via high-resolution…

0106 biological scienceshiilidioksidiPeat010504 meteorology & atmospheric sciencesPermafrostikiroutaPermafrostAtmospheric sciences01 natural sciencesMethaneCO2 EXCHANGEclimate warmingPALSA MIREchemistry.chemical_compoundDissolved organic carbonGeneral Environmental SciencekasvihuoneilmiöGlobal and Planetary ChangeCLIMATE-CHANGEEcologyArctic Regionsmethane oxidationhiilen kiertopermafrost-carbon-feedbackPlantsmesocosmCOORGANIC-MATTERkasvihuonekaasutCH4 FLUXESgreenhouse gasNORTHERN PEATLANDSCarbon dioxideCO2MethaneOxidation-ReductionBiogeochemical cycleTUNDRA SOILSClimate Changeta1172ta1171010603 evolutionary biologymetaaniCarbon CycleGreenhouse GasesMETHANE EMISSIONSEnvironmental Chemistry0105 earth and related environmental sciencesAtmosphere15. Life on landCarbon DioxideWATER-TABLEEXTRACTION METHODArcticchemistry13. Climate actionGreenhouse gasEnvironmental science
researchProduct

The impact of methanotrophic activity on methane emissions through the soils of geothermal areas

2013

Methane plays an important role in the Earth’s atmospheric chemistry and radiative balance being the most important greenhouse gas after carbon dioxide. It has recently been established that geogenic gases contribute significantly to the natural CH4 flux to the atmosphere (Etiope et al., 2008). Volcanic/geothermal areas contribute to this flux, being the site of widespread diffuse degassing of endogenous gases (Chiodini et al., 2005). In such an environment soils are a source rather than a sink for atmospheric CH4 (Cardellini et al., 2003; Castaldi and Tedesco, 2005; D’Alessandro et al., 2009; 2011; 2013). Due to the fact that methane soil flux measurements are laboratory intensive, very fe…

Methane oxidation MethanotrophsSettore BIO/19 - Microbiologia GeneraleSettore GEO/08 - Geochimica E Vulcanologia
researchProduct

CH4 oxidation in a boreal lake during the development of hypolimnetic hypoxia

2020

AbstractFreshwater ecosystems represent a significant natural source of methane (CH4). CH4 produced through anaerobic decomposition of organic matter (OM) in lake sediment and water column can be either oxidized to carbon dioxide (CO2) by methanotrophic microbes or emitted to the atmosphere. While the role of CH4 oxidation as a CH4 sink is widely accepted, neither the magnitude nor the drivers behind CH4 oxidation are well constrained. In this study, we aimed to gain more specific insight into CH4 oxidation in the water column of a seasonally stratified, typical boreal lake, particularly under hypoxic conditions. We used 13CH4 incubations to determine the active CH4 oxidation sites and the …

DYNAMICS010504 meteorology & atmospheric sciencesBoreal lake010501 environmental sciences01 natural sciencesSink (geography)Methanechemistry.chemical_compoundWater columnboreal lakeHypoxiaWater Science and TechnologyStable isotopesTotal organic carbonchemistry.chemical_classificationgeography.geographical_feature_categoryEcologymethanekerrostumatHypoxia (environmental)WATER COLUMNboreaalinen vyöhykekasvihuonekaasutGreenhouse gaseshypoksiaSUMMEREnvironmental chemistryCarbon dioxideHypolimnionMethaneSEDIMENTSResearch ArticlehapetusFLUXESoxidation119 Other natural sciencesstable isotopesAquatic ScienceCO2 CONCENTRATIONjärvetmetaanistratificationORGANIC-CARBONSTRATIFICATIONgreenhouse gasesOxidationOrganic matterEcology Evolution Behavior and Systematics1172 Environmental sciences0105 earth and related environmental sciences219 Environmental biotechnologyisotoopitgeographyhypoxiaCLIMATEchemistryEnvironmental scienceANAEROBIC METHANE OXIDATION
researchProduct

Direct Methane Oxidation on La1-xSrxCr1-yFeyO3-δ perovskite-type oxides as Potential Anode for Intermediate Temperature Solid Oxide Fuel Cells

2016

Abstract La1−xSrxCr1−yFeyO3−δ (x = 0, 0.1, 0.15, 0.2; y = 0, 0.3, 0.5) perovskite-type oxide powders were synthesized by solution combustion synthesis and characterized by X-ray diffraction, X-ray photoelectron spectroscopy and H2-temperature programmed reduction. Selected compositions were studied by CH4-temperature programmed reduction in the absence and in the presence of H2S. Temperature programmed oxidation and structural characterizations were performed in order to discriminate the nature of residual deposits on the catalyst surface. The study about reduction in different methane-based mixture revealed that total and partial methane oxidation occurred in the range ∼450–1000 °C indepen…

Doped-LaCrO3; IT-SOFC; Direct methane oxidation; H2SInorganic chemistryOxide02 engineering and technology010402 general chemistry01 natural sciencesCatalysisMethaneCatalysischemistry.chemical_compoundX-ray photoelectron spectroscopyGeneral Environmental SciencePerovskite (structure)Range (particle radiation)IT-SOFCChemistryH2SProcess Chemistry and Technologydirect methane oxidation021001 nanoscience & nanotechnologydoped-LaCrO30104 chemical sciencesAnodedoped-LaCrO3; IT-SOFC; direct methane oxidation; H2SSettore CHIM/03 - Chimica Generale E InorganicaAnaerobic oxidation of methane0210 nano-technology
researchProduct

Methanotrophic activity and diversity of methanotrophs in volcanic geothermal soils at Pantelleria (Italy)

2014

Volcanic and geothermal systems emit endogenous gases by widespread degassing from soils, including CH4, a greenhouse gas twenty-five times as potent as CO2. Recently, it has been demonstrated that volcanic or geothermal soils are not only a source of methane, but are also sites of methanotrophic activity. Methanotrophs are able to consume 10–40 Tg of CH4 a−1 and to trap more than 50% of the methane degassing through the soils. We report on methane microbial oxidation in the geothermally most active site of Pantelleria (Italy), Favara Grande, whose total methane emission was previously estimated at about 2.5 Mg a−1 (t a−1). Laboratory incubation experiments with three top-soil samples from …

Methane oxidationMethane monooxygenaselcsh:LifeSettore BIO/19 - Microbiologia GeneraleMethanechemistry.chemical_compoundlcsh:QH540-549.5Soil pHEcology Evolution Behavior and SystematicsEarth-Surface ProcessesbiologyEcologylcsh:QE1-996.5bacterial diversityAlphaproteobacteriaVerrucomicrobiabiology.organism_classificationMethanotrophSettore GEO/08 - Geochimica E Vulcanologialcsh:Geologylcsh:QH501-531chemistryEnvironmental chemistryMethane emissionAnaerobic oxidation of methaneSoil waterbiology.proteinSoil horizonlcsh:EcologyBiogeosciences
researchProduct